Middleware 2021 Workshop
Deep learning is a rapidly growing field of machine learning, and has proven successful in many domains, including computer vision, language translation, and speech recognition. The training of deep neural networks is resource intensive, requiring compute accelerators such as GPUs, as well as large amounts of storage and memory, and network bandwidth. Additionally, getting the training data ready requires a lot of tooling for data cleansing, data merging, ambiguity resolution, etc. Sophisticated middleware abstractions are needed to schedule resources, manage the distributed training job as well as visualize how well the training is progressing. Likewise, serving the large neural network models with low latency constraints can require middleware to manage model caching, selection, and refinement.
All the major cloud providers, including Amazon, Google, IBM, and Microsoft have started to offer cloud services in the last year or so with services to train and/or serve deep neural network models. In addition, there is a lot of activity in open source middleware for deep learning, including Tensorflow, Theano, Caffe2, PyTorch, and MXNet. There are also efforts to extend existing platforms such as Spark for deep learning workloads.
This workshop focuses on the tools, frameworks, and algorithms to support executing deep learning algorithms in a distributed environment. As new hardware and accelerators become available, the middleware and systems need to be able exploit their capabilities and ensure they are utilized efficiently.
Authors are invited to submit research papers, experience papers, demonstrations, or position papers
Papers must be written in English and submitted in PDF format. All papers should follow ACM formatting instructions, specifically the ACM SIG Proceedings Standard Style. The author kit containing the templates for the required style can be found at http://www.acm.org/publications/proceedings-template.
Submissions should not be blinded for review. Please submit your papers via the submission site: https://didl21.hotcrp.com
All accepted papers will appear in the Middleware 2021 companion proceedings, available in the ACM Digital Library. All accepted papers will also be presented at the workshop, and at least one author of each paper must register for the workshop.
Bishwaranjan Bhattacharjee, IBM Research
Vatche Isahagian, IBM Research
Vinod Muthusamy, IBM Research
Parag Chandakkar, Walmart Labs
Ian Foster, Argonne National Laboratory and the University of Chicago
Matthew Hill, Dataminr
Mayoore Jaiswal, Nvidia
Gauri Joshi, Carnegie Mellon University
Jayaram K. R., IBM Research
Ruben Mayer, Technical University of Munich
Pietro Michiardi, Eurecom
Phuong Nguyen, eBay
Peter Pietzuch, Imperial College
Chuan Wu, University of Hong Kong