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Applications related to GAN

INPUT OUTPUT

pix2pix

R

Corentin Hardy (Technicolor,Inria) G ing GANs DIDL 2018



N in a nutshell

Generative adversarial

network! (GAN)
A GAN is composed of two Training dataset

components : a generator G and O real data
a discriminator D.
The goal of a GAN is to Noise
generate new samples with the H» Generator
same distribution of a training

dataset.

G and D are two ML models
(DNNs).

Discriminator fake or real ?

fake data

[5]517]7]

LGoodfellow et al. ”Generative adversarial nets.” (2014)
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Adversarial loss functions

Training a GAN means learning D and G with adversary losses :
e the discriminator D tries to minimize:
Lp = ExPyy, [log D(x)] + Ex~pg [log(1 — D(x))]
e the generator G tries to maximize: Lg = Ex.p, [log D(x)]
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Adversarial loss functions

Training a GAN means learning D and G with adversary losses :

e the discriminator D tries to minimize:
Lp = Exwpy, log D(x)] + Exp, [log(1 — D(x))]
e the generator G tries to maximize: Lg = Ex.p, [log D(x)]
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Federated Learning?

Parameter
Server

2McMahan, H. Brendan, et al. ” Communication-efficient learning of deep networks from
decentralized data.” (2016)
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Gossip methods
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Methods Communication per worker | Decentralized
Federated Learning 2(16| + D)) No (PS)
All-reduce without PS N(|G| + |D|) Yes
Gossip method |G| + |D| Yes

Gossip-based method 3

e More scalable in term of communications.

e Should decreases the learning performances.

Question : In the case of GANSs, does gossip-based method not decrease too
much performances of the final model ?

3Existing gossip method for classical DNN : M. Blot et al. ”Gossip training for deep

learning” (2016)
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The different communications setups

Competitors :

a) Stand-alone (no
communication)

b) Federated Learning
(all-reduced)

¢) Gossip DDL (G; and D; are
dependents)

d) Gossip DDL.ind (G; and D;
are independents)

Figure: Red and blue arrows
represent G; and D; movement.
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Experimental setup

We emulate up to 100 workers on a large server to evaluate performances of
Gossip DDL against the competitors.

G and D are two DNN models.

Each worker performs 20, 000 iterations during the training.

All communications are synchronized every K = 200 iterations.

Each machine hosts §; of the training dataset (MNIST) randomly i.i.d.
split.

The MNSIT score (Inception score adapted to MNIST) and the Fréchet
Inception Distance (adapted to MNIST) of all generators is computed
every 1,000 iterations.
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Performances of GAN during the training
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periment with non i.i.d data (N=10)
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Conclusion

Gossip performances are closed to federated learning.

Considering G; and D; independents slightly improves the final score.

The distribution of data on machines is crucial for GANs!

e Explore solutions in the case of non i.i.d. spread dataset.

Understand the potential of GAN trained on a spread dataset
(data-augmentation?)
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