Gossiping GANs

Corentin Hardy* Erwan Le Merrer** — Bruno Sericola**

*Technicolor & Inria **Inria

DIDL 2018

Innia

イロト イヨト イヨト イヨト

1 Introduction

- Motivations
- GAN over a spread dataset

2 Experiments

- Competitors and experimental setup
- Experimental setup
- Results
- Case of non i.i.d spread dataset

3 Discussion

∃ >

Introduction

- Motivations
- GAN over a spread dataset

2 Experiments

- Competitors and experimental setup
- Experimental setup
- Results
- Case of non i.i.d spread dataset

3 Discussion

イロト イ押ト イヨト イヨト

Applications related to GAN

sav

4/1

Generative adversarial $network^1(GAN)$

A GAN is composed of two components : a generator \mathcal{G} and a discriminator \mathcal{D} . The goal of a GAN is to generate new samples with the same distribution of a training dataset.

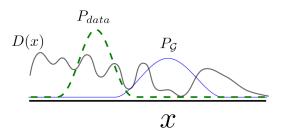
 \mathcal{G} and \mathcal{D} are two ML models (DNNs).

¹Goodfellow *et al.* "Generative adversarial nets." $(2014) \triangleleft \square$

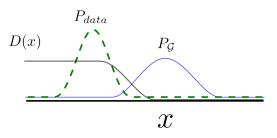
Corentin Hardy (Technicolor, Inria)

Gossiping GANs

- the discriminator \mathcal{D} tries to minimize: $L_D = \mathbb{E}_{x \sim P_{data}} [\log D(x)] + \mathbb{E}_{x \sim P_{\mathcal{G}}} [\log(1 - D(x))]$
- the generator \mathcal{G} tries to maximize: $L_G = \mathbb{E}_{x \sim P_G} [\log D(x)]$

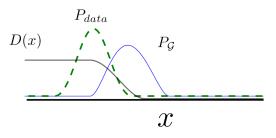


- the discriminator \mathcal{D} tries to minimize: $L_D = \mathbb{E}_{x \sim P_{data}} [\log D(x)] + \mathbb{E}_{x \sim P_G} [\log(1 - D(x))]$
- the generator \mathcal{G} tries to maximize: $L_G = \mathbb{E}_{x \sim P_G} [\log D(x)]$



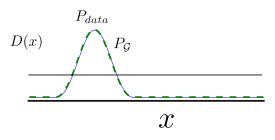
▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ― 圖 …

- the discriminator \mathcal{D} tries to minimize: $L_D = \mathbb{E}_{x \sim P_{data}} [\log D(x)] + \mathbb{E}_{x \sim P_G} [\log(1 - D(x))]$
- the generator \mathcal{G} tries to maximize: $L_G = \mathbb{E}_{x \sim P_G} [\log D(x)]$



▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ― 圖 …

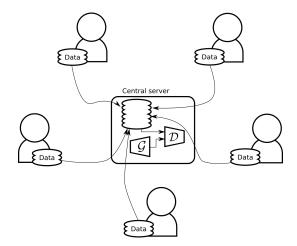
- the discriminator \mathcal{D} tries to minimize: $L_D = \mathbb{E}_{x \sim P_{data}} [\log D(x)] + \mathbb{E}_{x \sim P_G} [\log(1 - D(x))]$
- the generator \mathcal{G} tries to maximize: $L_G = \mathbb{E}_{x \sim P_G} [\log D(x)]$

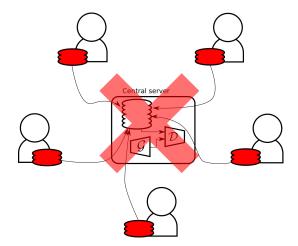


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

<ロ> (四) (四) (日) (日) (日)

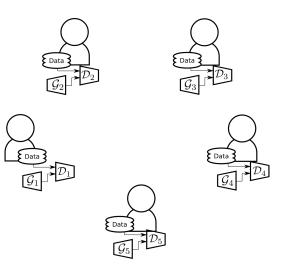
Corentin Hardy (Technicolor, Inria)



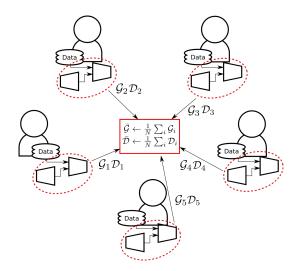


・ロト ・ 一下・ ・ 日 ト ・

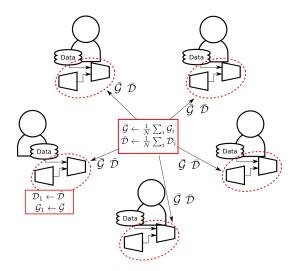
-



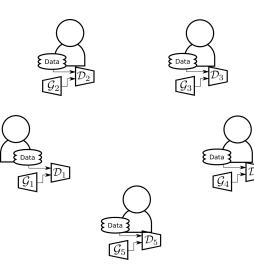
イロト イポト イヨト イヨト



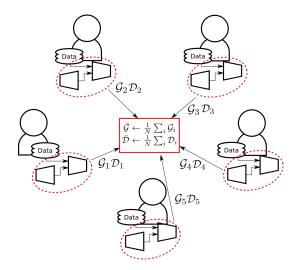
< 口 > < (司 >)



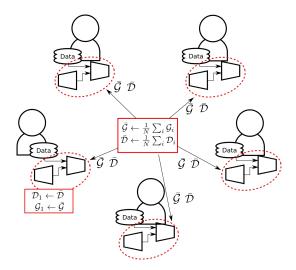
(日) (四) (日)



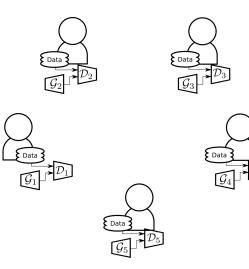
イロト イポト イヨト イヨト



< 口 > < (司 >)

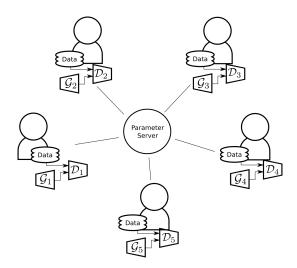


< □ > < /₽ >



イロト イポト イヨト イヨト

Federated Learning²



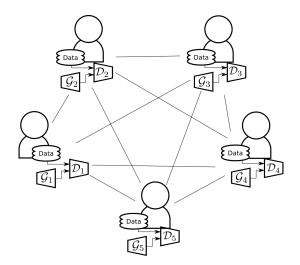
²McMahan, H. Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." (2016) $(\Box) + (\Box) + (\Box) + (\Xi) = (\Xi$

Corentin Hardy (Technicolor, Inria)

Gossiping GANs

DIDL 2018 8 / 18

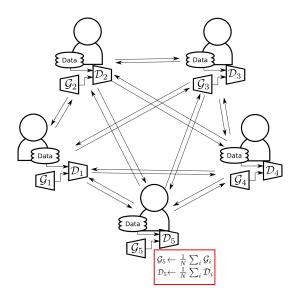
All-reduce without PS



ж

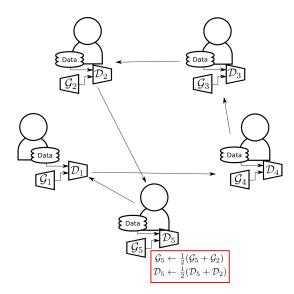
イロト イポト イヨト イヨト

All-reduce without PS



ж

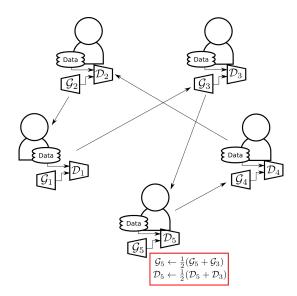
Gossip methods



3

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

Gossip methods



10/18

э.

◆□▶ ◆圖▶ ◆注▶ ◆注▶

Methods	Communication per worker	Decentralized
Federated Learning	$2(\mathcal{G} + \mathcal{D})$	No (PS)
All-reduce without PS	$N(\mathcal{G} + \mathcal{D})$	Yes
Gossip method	$ \mathcal{G} + \mathcal{D} $	Yes

Gossip-based method ³

- More scalable in term of communications.
- Should decreases the learning performances.

Question : In the case of GANs, does gossip-based method not decrease too much performances of the final model ?

³Existing gossip method for classical DNN : M. Blot et al. "Gossip training for deep learning" (2016)

Corentin Hardy (Technicolor, Inria)

1 Introduction

- Motivations
- GAN over a spread dataset

2 Experiments

- Competitors and experimental setup
- Experimental setup
- Results
- Case of non i.i.d spread dataset

3 Discussion

Image: A matrix

Competitors :

- a) Stand-alone (no communication)
- b) Federated Learning (all-reduced)
- c) Gossip DDL (\mathcal{G}_i and \mathcal{D}_i are dependents)
- d) Gossip DDL_ind (\mathcal{G}_i and \mathcal{D}_i are independents)

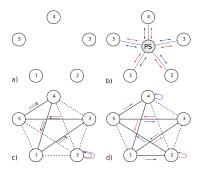


Figure: Red and blue arrows represent \mathcal{G}_i and \mathcal{D}_i movement.

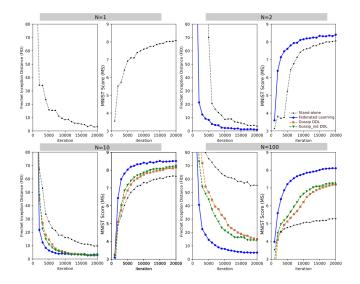
Image: A matrix

We emulate up to 100 workers on a large server to evaluate performances of Gossip DDL against the competitors.

- \mathcal{G} and \mathcal{D} are two DNN models.
- $\bullet\,$ Each worker performs 20,000 iterations during the training.
- All communications are synchronized every K=200 iterations.
- $\bullet\,$ Each machine hosts $\frac{1}{N}$ of the training dataset (MNIST) randomly i.i.d. split.
- The MNSIT score (Inception score adapted to MNIST) and the Fréchet Inception Distance (adapted to MNIST) of all generators is computed every 1,000 iterations.

◆□▶ ◆圖▶ ★ ヨ▶ ◆ ヨ ● のへで

Performances of GAN during the training



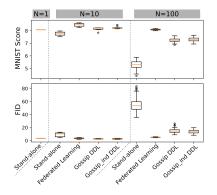
Corentin Hardy (Technicolor, Inria)

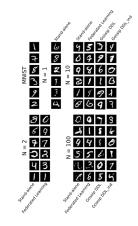
Gossiping GANs

・ロト ・ 得ト ・ ヨト

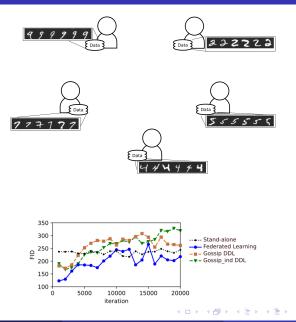
DIDL 2018 15 / 18

Final scores and generated samples





Experiment with non i.i.d data (N=10)



DIDL 2018 17 / 18

э

- Gossip performances are closed to federated learning.
- Considering \mathcal{G}_i and \mathcal{D}_i independents slightly improves the final score.
- The distribution of data on machines is crucial for GANs!

Future works

- Explore solutions in the case of non i.i.d. spread dataset.
- Understand the potential of GAN trained on a spread dataset (data-augmentation?)

< 日 > (同 > (回 > (回 >)))