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Applications related to GAN
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GAN in a nutshell

Generative adversarial
network1(GAN)

A GAN is composed of two
components : a generator G and
a discriminator D.
The goal of a GAN is to
generate new samples with the
same distribution of a training
dataset.
G and D are two ML models
(DNNs).

1Goodfellow et al. ”Generative adversarial nets.” (2014)
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Adversarial loss functions

Training a GAN means learning D and G with adversary losses :

• the discriminator D tries to minimize:
LD = Ex∼Pdata

[logD(x)] + Ex∼PG [log(1− D(x))]

• the generator G tries to maximize: LG = Ex∼PG [logD(x)]
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How train a GAN over a spread dataset ?
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Federated Learning2

2McMahan, H. Brendan, et al. ”Communication-efficient learning of deep networks from
decentralized data.” (2016)
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All-reduce without PS
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Gossip methods
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Summary

Methods Communication per worker Decentralized
Federated Learning 2(|G|+ |D|) No (PS)
All-reduce without PS N(|G|+ |D|) Yes
Gossip method |G|+ |D| Yes

Gossip-based method 3

• More scalable in term of communications.

• Should decreases the learning performances.

Question : In the case of GANs, does gossip-based method not decrease too
much performances of the final model ?

3Existing gossip method for classical DNN : M. Blot et al. ”Gossip training for deep
learning” (2016)
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The different communications setups

Competitors :

a) Stand-alone (no
communication)

b) Federated Learning
(all-reduced)

c) Gossip DDL (Gi and Di are
dependents)

d) Gossip DDL ind (Gi and Di

are independents)
Figure: Red and blue arrows
represent Gi and Di movement.
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Experimental setup

We emulate up to 100 workers on a large server to evaluate performances of
Gossip DDL against the competitors.

• G and D are two DNN models.

• Each worker performs 20, 000 iterations during the training.

• All communications are synchronized every K = 200 iterations.

• Each machine hosts 1
N of the training dataset (MNIST) randomly i.i.d.

split.

• The MNSIT score (Inception score adapted to MNIST) and the Fréchet
Inception Distance (adapted to MNIST) of all generators is computed
every 1, 000 iterations.

Corentin Hardy (Technicolor,Inria) Gossiping GANs DIDL 2018 14 / 18



15/18

Performances of GAN during the training
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Final scores and generated samples
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Experiment with non i.i.d data (N=10)
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Conclusion

• Gossip performances are closed to federated learning.

• Considering Gi and Di independents slightly improves the final score.

• The distribution of data on machines is crucial for GANs!

Future works
• Explore solutions in the case of non i.i.d. spread dataset.

• Understand the potential of GAN trained on a spread dataset
(data-augmentation?)
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