Services
and data
management

olamobile

Distributed C++-Python embedding for
fast predictions and fast prototyping

Second Workshop on Distributed Infrastructures for Deep Learning (DIDL18)
Rennes France, December 10, 2018

Banner Display Advertising at OLA Mobile SIT

securityandtrust.lu

1. User clicks on generic banner ad

2. Ad request sent with user profile
device, OS, provider, browser, date, country code, etc.

3. Feature extraction from user profile
Time localization, Country Code Conversion - OneHotEncoding
4. Predict most suitable ad campaign and landing page

5. Redirect user to landing page

Banner Display Advertising at OLA Mobile SIT

securityandtrust.lu

1. User clicks on generic banner ad

2. Ad request sent with user profile
device, OS, provider, browser, date, country code, etc.

3. Feature extraction from user profile 200 ms
Time localization, Country Code Conversion - OneHotEncoding
4. Predict most suitable ad campaign and landing page

5. Redirect user to landing page

Ad Campaign classification SIT |

* 1 year of research using SciKit Learn, started in 2016
* Uses Logistic Regression classifiers
* Extensive tuning based on sklearn implementation specifics
* Extensive feature engineering
* Dirty, unstructured, frequently changing data
* Data patterns do not imply correlations
* Classification based on a boolean label: Sale, not Sale
* Highly unbalanced datasets:
* Some got 1 sale every 1M clicks
* Some got 1 sale every 1K clicks
* Achieved consistent accuracy above 90%

Online Continuous Training Service SIT

securityandtrust.lu

- ConsumerManager: Processes live streamed data)
- DataManager: Persists records into structured files Eredlctor
- each file a complete data-set

- TrainingManager: Train LogisticRegression models /pcvr/ivl1.0f
- one model per predicted feature value /pcvr/vl.0/predict/<int:campaign=>
- Predictor: Predict sale probability per campaign /pecvr/vl.0/predict/<int:campaign>/<int:count>

- the predicted feature is the campaign id
- input is the user profile

select
L & load
ConsumerManager TrainingManager
(thread N i - A
Data postprocessing
- Sample: balance labels
Sm RedirectsConsumer - Clean: malformed records
= Split: Train, Test
s tore poll Custom DneHotEncodingI
Data]!-!lanager q h 1
S heand Train = LDgisticRﬁgressionI
Data Files l :
t store
¥ — SalesConsumer Trained
Test - AUC I Models

e A

Predictor ST

* Python based implementation
* REST server
* Loads classifiers from disk
* Per request, predicts with every available classifier

* 5000 active campaigns on average, thus 5000 classifiers!
* The 200ms deadline still applies

Predictor ST |

* Python based implementation
* REST server
* Loads classifiers from disk
* Per request, predicts with every available classifier

* 5000 active campaigns on average, thus 5000 classifiers!
* The 200ms deadline still applies

* Best result after heavy optimization: 3.1ms per classifier

Predictor ST |

* Python based implementation
* REST server
* Loads classifiers from disk
* Per request, predicts with every available classifier

* 5000 active campaigns on average, thus 5000 classifiers!
* The 200ms deadline still applies

* Best result after heavy optimization: 3.1ms per classifier
* For 5000 classifiers that would be: 15.5 sec

Predictor ST |

* Python based implementation
* REST server
* Loads classifiers from disk
* Per request, predicts with every available classifier

* 5000 active campaigns on average, thus 5000 classifiers!
* The 200ms deadline still applies

* Best result after heavy optimization: 3.1ms per classifier
* For 5000 classifiers that would be: 15.5 sec
* To obey deadline we need 77.5 hardware threads and no conflicts

Python version performance SIT

securityandtrust.lu

225 == Python SingleThreaded

Time (sec)

50 100 200 500 750 1000 2000

Classifiers

Python version performance SIT

securityandtrust.lu

2.25 == Python MultiThreading
7 == Python SingleThreaded

Time (sec)

a0 100 200 500 750 1000 2000

Classifiers

Python version performance SIT

securityandtrust.lu

2.25 == Python MultiThreading
7 == Python SingleThreaded

1.75

1.25

Time (sec)

075

0.5

0.25

0

a0 100 200 500 750 1000 2000

Classifiers

* Python GIL: Concurrency does not translate to parallelism
e+

C++ to the rescue SNT

* Embed Python into C++

 Have C++ handle all data intensive processing
* Faster and fine grained memory management
* Lighter data structures
* Much faster computation execution
* True massive parallelism

* Execute predictions in Python
* 0.8ms per classifier
* Implement Python multi-processing: no GIL
* No need to change ML framework
* No need to change the trainer

C++ to the rescue SNT

securityandtrust.lu

R R E R EEEEEEEEEE I EsEssErEEEEEEEEEEEEEEEEEEEEE R IIEEEEEEEEE . M Python processes
N HTTP Server threads

Main C++ process M Worker threads R TP P PP PR R PR EETY

C predict j
-IPC/Pipe” -

Pre & Post
processing

Pre & Post

j‘_——)-(predict j
processing

Thread-safe
Deque

Incoming Request
-

Outgoing Reply

Pre & Post
ngcess?r?g j(———)'(predict j

6\
&
Pre & Post
[REST) [plfgc&e{ss?r?g j(—)~[predict j
(SRR FAdd/Re*%mwe Metadata DB]

Classifier DB
Interprocess shared-memory

(REST o
OO

C++-Python Performance SIT

securityandtrust.lu

2.5 == C++-Python
Embedding

== Python MultiThreading

2
Fython SingleThreaded

.15
I
E
=

0.5

_—---.-..
]
al 100 200 200 Fal 1000 Z0DOOD

Classifiers

C++-Python Scalability, 2000 classifiers L1y

1.20 = Tpotal time == Server time
|
1.08 [+
(
0.86
0.69
o
[4F}
E 05

0.34 !
W\

0.17 Pr———

0.00

Hardware Threads

C++-Python Worker Utilization SIT

securityandtrust.lu

B Median == std dev

Tasks
(]
=

— =t 8] Lt WO L} =5 4] [| w1
— — Lot Lot] ol [4] [a]

44
48
5
5

=
=t

Hardware Threads

C++-Python Worker Utilization SIT

securityandtrust.lu

100 200
75 150
Tk
= a0 100
@
l_
25 50
0
— W [~ O o— £ WD [~ O

- 0

Python Worker Python Worker

Deployment statistics SIT

securityandtrust.lu

eCPM: 0.029

0.06

0,02

111 Frit2 Sat13 Sun 14 Mon 15 Tue 16 Wed 17 Thu 18 Fri19 Sat20 Sun 21 Mon 22 Tue 23

Deployment statistics SIT

October 2018 results: revenue increase by 31%

Conclusions SIT

* Python is dead slow!
* Concurrency does not guarantee performance

* Embedding Python into C++ enabled major performance
Improvements

* Development time was short
* No need to evaluate a new ML platform

* Future work
* improve work distribution, remove central queue

* improve interprocess shared memory performance
I 3309090909090

Thank you

Main C++ process

M Python processes

N HTTP Server threads M Worker threads h H
. . "\
: processing . !
=
s |-
£ |:
E :
| 5 2% |
Incoming Request : Thread-safe [=1 Ceiaseeeiisasssaaass 55 [
3 ==
Outgoing Rep|y E &3 ..
- . © w0 .
: : i oy |
: . predict o |:
: : e |:
. H s ..
L SRSE NG T £ |
E :
N Filesystem Add/Remove
: reohitar Metadata DB

Tasks

Time (sec)

=)
o

=]

lo0o

SIT

securityandtrust.lu

== C++-Python
Embedding

== Python MultiThreading

Python SingleThreaded

__——

a0 100 200 500 750 1000 2000
Classifiers
B Median == std dev
=t o0 o =] [=] =t o0 od =] (=} =t o0 o =] (=] =t
- = o ™ & @M @m = = = @ b B o

Hardware Threads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

