
Distributed C++-Python embedding for 
fast predictions and fast prototyping

Second Workshop on Distributed Infrastructures for Deep Learning (DIDL18)
Rennes France, December 10, 2018

Georgios Varisteas, SnT, georgios.varisteas@uni.lu
Tigran Avanesov, OLA Mobile, tigran.avanesov@olamobile.com
Radu State, SnT, radu.state@uni.lu



Banner Display Advertising at OLA Mobile

2

1. User clicks on generic banner ad

2. Ad request sent with user profile
device, OS, provider, browser, date, country code, etc.

3. Feature extraction from user profile

Time localization, Country Code Conversion→OneHotEncoding

4. Predict most suitable ad campaign and landing page

5. Redirect user to landing page



Banner Display Advertising at OLA Mobile

3

1. User clicks on generic banner ad

2. Ad request sent with user profile
device, OS, provider, browser, date, country code, etc.

3. Feature extraction from user profile

Time localization, Country Code Conversion→OneHotEncoding

4. Predict most suitable ad campaign and landing page

5. Redirect user to landing page

200 ms



Ad Campaign classification

4

● 1 year of research using SciKit Learn, started in 2016
● Uses Logistic Regression classifiers
● Extensive tuning based on sklearn implementation specifics

● Extensive feature engineering
● Dirty, unstructured, frequently changing data
● Data patterns do not imply correlations

● Classification based on a boolean label: Sale, not Sale
● Highly unbalanced datasets: 

● Some got 1 sale every 1M clicks
● Some got 1 sale every 1K clicks
● Achieved consistent accuracy above 90%



Online Continuous Training Service

5



• Python based implementation
● REST server
● Loads classifiers from disk
● Per request, predicts with every available classifier

● 5000 active campaigns on average, thus 5000 classifiers!
● The 200ms deadline still applies

Predictor

6



• Python based implementation
● REST server
● Loads classifiers from disk
● Per request, predicts with every available classifier

● 5000 active campaigns on average, thus 5000 classifiers!
● The 200ms deadline still applies

● Best result after heavy optimization: 3.1ms per classifier

Predictor

7



• Python based implementation
● REST server
● Loads classifiers from disk
● Per request, predicts with every available classifier

● 5000 active campaigns on average, thus 5000 classifiers!
● The 200ms deadline still applies

● Best result after heavy optimization: 3.1ms per classifier
● For 5000 classifiers that would be: 15.5 sec

Predictor

8



• Python based implementation
● REST server
● Loads classifiers from disk
● Per request, predicts with every available classifier

● 5000 active campaigns on average, thus 5000 classifiers!
● The 200ms deadline still applies

● Best result after heavy optimization: 3.1ms per classifier
● For 5000 classifiers that would be: 15.5 sec
● To obey deadline we need 77.5 hardware threads and no conflicts

Predictor

9



Python version performance

10



Python version performance

11



Python version performance

12

• Python GIL: Concurrency does not translate to parallelism



• Embed Python into C++
● Have C++ handle all data intensive processing 

● Faster and fine grained memory management
● Lighter data structures
● Much faster computation execution
● True massive parallelism

● Execute predictions in Python
● 0.8ms per classifier
● Implement Python multi-processing: no GIL
● No need to change ML framework
● No need to change the trainer

13

C++ to the rescue



C++ to the rescue

14



C++-Python Performance

15



16

C++-Python Scalability, 2000 classifiers



17

C++-Python Worker Utilization



18

C++-Python Worker Utilization



19

Deployment statistics



20

Deployment statistics

October 2018 results: revenue increase by 31%



• Python is dead slow!
• Concurrency does not guarantee performance

• Embedding Python into C++ enabled major performance 
improvements

• Development time was short 
● No need to evaluate a new ML platform

• Future work
● improve work distribution, remove central queue
● improve interprocess shared memory performance

Conclusions

21



Thank you

22


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

