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Banner Display Advertising at OLA Mobile SIT
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1. User clicks on generic banner ad

2. Ad request sent with user profile
device, OS, provider, browser, date, country code, etc.

3. Feature extraction from user profile
Time localization, Country Code Conversion - OneHotEncoding
4. Predict most suitable ad campaign and landing page

5. Redirect user to landing page




Banner Display Advertising at OLA Mobile SIT

securityandtrust.lu

1. User clicks on generic banner ad

2. Ad request sent with user profile
device, OS, provider, browser, date, country code, etc.

3. Feature extraction from user profile 200 ms
Time localization, Country Code Conversion - OneHotEncoding
4. Predict most suitable ad campaign and landing page

5. Redirect user to landing page




Ad Campaign classification SIT |

* 1 year of research using SciKit Learn, started in 2016
* Uses Logistic Regression classifiers
* Extensive tuning based on sklearn implementation specifics
* Extensive feature engineering
* Dirty, unstructured, frequently changing data
* Data patterns do not imply correlations
* Classification based on a boolean label: Sale, not Sale
* Highly unbalanced datasets:
* Some got 1 sale every 1M clicks
* Some got 1 sale every 1K clicks
* Achieved consistent accuracy above 90%



Online Continuous Training Service SIT
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- ConsumerManager: Processes live streamed data )
- DataManager: Persists records into structured files Eredlctor
- each file a complete data-set

- TrainingManager: Train LogisticRegression models /pcvr/ivl1.0f
- one model per predicted feature value /pcvr/vl.0/predict/<int:campaign=>
- Predictor: Predict sale probability per campaign /pecvr/vl.0/predict/<int:campaign>/<int:count>

- the predicted feature is the campaign id
- input is the user profile
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Predictor ST

* Python based implementation
* REST server
* Loads classifiers from disk
* Per request, predicts with every available classifier

* 5000 active campaigns on average, thus 5000 classifiers!
* The 200ms deadline still applies
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* Python based implementation
* REST server
* Loads classifiers from disk
* Per request, predicts with every available classifier

* 5000 active campaigns on average, thus 5000 classifiers!
* The 200ms deadline still applies

* Best result after heavy optimization: 3.1ms per classifier
* For 5000 classifiers that would be: 15.5 sec
* To obey deadline we need 77.5 hardware threads and no conflicts



Python version performance SIT
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225 == Python SingleThreaded
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Python version performance SIT
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2.25 == Python MultiThreading
7 == Python SingleThreaded
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* Python GIL: Concurrency does not translate to parallelism
e+



C++ to the rescue SNT

* Embed Python into C++

 Have C++ handle all data intensive processing
* Faster and fine grained memory management
* Lighter data structures
* Much faster computation execution
* True massive parallelism

* Execute predictions in Python
* 0.8ms per classifier
* Implement Python multi-processing: no GIL
* No need to change ML framework
* No need to change the trainer



C++ to the rescue SNT
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C++-Python Performance SIT
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C++-Python Scalability, 2000 classifiers L1y

1.20 = Tpotal time == Server time
|
1.08 [+
(
0.86
0.69
o
[4F}
E 05

0.34 !
W\

0.17 Pr———

0.00

Hardware Threads



C++-Python Worker Utilization SIT
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C++-Python Worker Utilization SIT
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Deployment statistics SIT
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eCPM: 0.029
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Deployment statistics SIT

October 2018 results: revenue increase by 31%




Conclusions SIT

* Python is dead slow!
* Concurrency does not guarantee performance

* Embedding Python into C++ enabled major performance
Improvements

* Development time was short
* No need to evaluate a new ML platform

* Future work
* improve work distribution, remove central queue

* improve interprocess shared memory performance
I 3309090909090



Thank you
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