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Motivation[1]

● Popularity of deep learning in several fields
○ Ability to learn features in an unsupervised manner

○ Availability and ability to collect large amounts of data, especially unstructured 

data
○ Recent improvements to GPU technologies

○ Advances in interconnection technologies (NVLink, Infiniband, 100 GbE, etc.)

○ Easy-to-use open source deep-learning frameworks
■ Caffe, Caffe2, Torch, Tensorflow, etc.



Need for scalable and robust deep learning platforms

● A large organization with a private data center

○ Multiple teams, frameworks and application domains
○ Goals: 

■ Make effective use of expensive hardware
■ Run deep learning workloads in a robust and secure manner
■ Avoid repetitive work, and situations where each team has to set up and maintain its 

own deep-learning “software stack”
■ Reduce barrier to entry : data scientists should focus on their algorithms, data, 

hyperparameter optimization, etc. and not on installations, maintenance, failure 

handling etc.

● A cloud provider

○ Enable small, medium and large businesses to address said goals



This Talk

Robust Scheduling and Elastic Scaling of Deep Learning Workloads

● Context: A deep learning platform developed and used at IBM Research
○ DLaaS : Deep Learning as a Service 

■ Released March 20, 2018
■ Part of IBM Watson Studio, available on IBM Cloud
■ https://www.ibm.com/cloud/deep-learning (trials are free)

○ FfDL : Fabric for Deep Learning 
■ Open source release of major portions of DLaaS
■ https://github.com/IBM/FfDL

● Built by composing several open-source technologies
○ Simple concepts (compared to academic papers)
○ Simplicity →Maintainability

https://www.ibm.com/cloud/deep-learning
https://github.com/IBM/FfDL


DLaaS : Key Challenges

● Training jobs typically run continuously for 1-7 days
○ Make several passes over a large data set (several TB)
○ Consequence of failure is significant (loss of several days of work)
○ Need (user configurable/directed) reliable checkpointing

● GPU-heavy
○ Designed to maximize GPU utilization
○ Hardware failures (reboots, bad GPUs) in DL clusters are more common than other clusters 

● Impose a heavier load on the datacenter network
● Job deployment is not instantaneous
● Users need reliable status updates (e.g., QUEUED, DOWNLOADING, FAILED)
● Reliable streaming of logs during training
● Isolation (multi-tenancy)
● Resilience to node and job crashes (with reliable notifications)



DLaaS : Goals

● Horizontal scalability
● Flexibility -- supports popular DL frameworks; like programming languages data 

scientists have an affinity towards frameworks

● Dependability -- highly available, robust (timely, handle hardware and software faults),  
secure and maintainable

● Efficiency -- overheads introduced to achieve (above) goals and response time to 

external requests should be minimal
● Elasticity -- user driven and system-driven

● Priorities and pre-emption



Outline

1. Motivation and Goals of DLaaS/FfDL
2. Architecture

3. Scheduling

4. Elastic Scaling
5. Lessons learned and future research



A Training Job

● Consists of several “training”/”learning” processes, each using GPUs and 
synchronizing over MPI or by using parameter servers

● DLaaS view : a set of Docker containers instantiated using a manifest file
○ Docker images corresponding to popular DL frameworks
○ DLaaS instantiates docker images with user code to create the training job
○ Each learning process → a DLaaS learner
○ Manifest file : framework to use, #CPUs, #GPUs, RAM, location of training 

data/checkpoints/results, credentials to access said locations, etc.

● Isolation and Confidentiality
○ Using Docker containers
○ Policies on network traffic to/from training jobs 
○ End-to-end encryption of data transferred to the training job and model parameters during 

synchronization



DLaaS/FfDL Architecture



DLaaS Architecture

● Middleware 
○ Above cluster manager (Kubernetes)

● Loosely coupled microservices
● GRPC
● Kubernetes for cluster management

○ Docker containers for training jobs encapsulated using 
stateful sets 

○ Ordered start, guaranteed restarts

● ETCD for coordination

API
REST GRPC

Lifecycle Manager 
(LCM)

Training Data Service

DLaaS Core Microservices

ETCD Kubernetes

MongoDBDocker

DLaaS Platform Services



DLaaS Job Deployment and Management
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Lifecycle Manager (LCM)

● Responsible for Creating, Deleting and Halting a Job
● Creating a training Job by interacting with Kubernetes

○ Job Monitor to babysit the job

○ Learners
○ Helper pod -- controller, log collector, download-data, store-results

○ Persistent volume claims

● Controller
○ Direct monitoring of learners through shared NFS

○ Updates status to ETCD (DOWNLOADING, PROCESSING, STORING, 

COMPLETED, FAILED)
○ Monitors exit state of learning process (Caffe, etc.)



Job Monitor

● 1 Job Monitor per Job
● Monitors the status of the learner pods by talking to Kubernetes

○ Image pull errors

○ Volume mount errors
○ Insufficient resources

○ Pods stuck in Container Creating/Terminating

● Monitors the status updates from Controller in ETCD
○ Reads status from each learner, aggregates status and updates status in Mongo 

through a Trainer API call

● Responsible for initiating garbage collection



Job Deployment in DLaaS

• Not instantaneous
1. Create Network policies
2. Create Secrets for data access
3. Create learners as stateful sets

• Ordered deployment of learners
• N learners : learner-0...learner-n-1
• Guaranteed restart upon crash failure

• LCM is 3 way replicated

• Q: What happens if a replica crashes in the middle of the steps outlined above?



DLaaS Job Deployment and Management
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Overhead (vs. Bare Metal)

Benchmark Framework #PCIe GPUs GPU type Decrease in Performance

VGG-16 Caffe 1 K80 3.29%

VGG-16 Caffe 2 K80 0.34%

VGG-16 Caffe 3 K80 5.88%

VGG-16 Caffe 4 K80 5.2%

InceptionV3 Tensorflow 1 K80 0.32%

InceptionV3 Tensorflow 2 K80 4.86%

InceptionV3 Tensorflow 3 K80 5.15%

InceptionV3 Tensorflow 4 K80 1.54%



Overhead (vs. NVIDIA DGX-1)

Benchmark Framework #PCIe GPUs GPU type Decrease in Performance

InceptionV3 Tensorflow 1 P100 3.30%

Resnet-50 Tensorflow 1 P100 7.07%

Resnet-152 Tensorflow 1 P100 8.13%

VGG-16 Tensorflow 1 P100 7.84%

InceptionV3 Tensorflow 2 P100 10.06%

Resnet-50 Tensorflow 2 P100 10.53%

Resnet-152 Tensorflow 2 P100 12.29%

VGG-16 Tensorflow 2 P100 13.69%



Recovery Times

Component Recovery Time

API 3-5s

LCM 4-6s

Guardian 1-2s

Helper 3-4s

Learner 10-20s



Scheduling Deep Learning Jobs

● Kubernetes default scheduler 
○ Scheduling at the pod level
○ FCFS

● PACK
○ Pack components of deep learning jobs (i.e. kubernetes pods) into as few physical 

servers as possible
○ 4 machines (4 GPUs each), a job with 2 learners (2 GPUs/learner) à 1 machine is 

used
● SPREAD

○ Opposite of PACK, ideal for replicated services
○ 4 machines (4 GPUs each), a job with 2 learners (2 GPUs/learner) à 2 machines 

are used
● Locality awareness

○ Try not to place across racks
○ Try not to place across network “areas”
○ Kubernetes labels



PACK vs. SPREAD

● 100 machines, 32 CPU cores, 4 K80 GPUs, 

128GB RAM per machine

● 4000 Jobs

○ 1-4 GPUs/learner, avg 2.5

○ 4-16 CPUs/learner, avg 5

○ 1-8 learners/job, avg 4.5



PACK vs. SPREAD

● 100 machines, 32 CPU cores, 4 K80 GPUs, 

128GB RAM per machine

● 4000 Jobs

○ 1-4 GPUs/learner, avg 2.5

○ 4-16 CPUs/learner, avg 5

○ 1-8 learners/job, avg 4.5



Gang Scheduling

● Enhancement to Kubernetes default scheduler

● Scenario : Cluster has 8 GPUs, 4 jobs arrive, with 4 learners and 1 GPU/learner
○ Desired outcome : 2 jobs running, 2 jobs “pending”

○ Kubernetes default scheduler 
■ 4 jobs with 2 learners/job running, 2 learners/job queued. Deadlock!
■ 4 jobs, 1st job 1 learner running, 2nd job 2 learners running, 3rd job 3 learners running, 4th

job 2 learners running. Deadlock!

● Gang scheduling needed

○ A distributed deep learning job is a “gang” of learners

○ Either the whole gang should be scheduled or none at all
● Gang scheduling is different from atomic job deployment

● Atomic job deployment – all artifacts of a job, implemented above cluster manager

● Gang scheduling – learners only, implemented inside the cluster manager



Elasticity in Deep Learning

● Ability to dynamically scale-up or scale-down training resources (GPUs, CPUs)
● Need for elasticity: 

○ User: Ability to complete the job faster by increasing the batch-size (using more 

resources) in the middle of training
○ System: maintain desired utilization levels, support job priorities, spot pricing



User-driven Elasticity : Motivation

Most deep learning models yield poor accuracy when using a very large batch size
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Top-1 Validation Accuracy with varying batch sizes
(Torch, Imagenet-1K, resnet 50)

BS4K BS8K BS16K(s)

Learning Rate: 1-30, 1e-1;
31-60, 1e-2;
61-90, 1e-3;

LR is scaled up with (total
BS/256) with warmup of 6 
epochs

Max Accuracy: BS4K (70 epochs) - 75.09%, BS8K - 75.26%, BS16K  - 70.8%

• Similar accuracy till 8K batch 
size

• Accuracy drops at 16K BS



Larger batch sizes can be used after initial phase of training

• Run with 8K till 30 epochs, 
change/simulate to 16K after that. 

• LR doubles as per 16K BS after 
30 epochs

Observation:
• Doubling the BS at 31st epoch 

provides same accuracy.
• Accuracy drops when doubling 

after 7 epochs. 

27
Reference: Smith et al. paper, Don't Decay the Learning Rate, Increase the Batch Size, ICLR 2016 
(https://openreview.net/forum?id=B1Yy1BxCZ) 

https://openreview.net/forum?id=B1Yy1BxCZ


User-driven Elasticity

• Static/Pre-defined
– Larger batch size can be used (hence more resources can be employed) after certain # of 

epochs
– Scenario: epochs 1-30 with <x GPUs, config1>, 30 to 60 with <y GPUs, config2>

• Dynamic
– User decides when to scale elastically through a UI/CLI command
– Scenario: User analyzes logs and decides to change hyper-parameters on the fly

Resume from last checkpoint
Setup hyper-parameters
For every epoch

train batches for this epoch
If (epoch == 30)

module.call_as_restart(4 /*GPUs*/) 



System-driven Elasticity -- Scenarios

● Optimal cluster utilization
○ Cluster does not have spare capacity but maintenance needs to be performed à Elastically 

scale down jobs instead of terminating them
○ Automatically scale-up jobs when cluster is under-utilized 

● Supporting priorities
○ Scale-down a lower priority job if a higher priority job arrives and resources aren’t available
○ Currently, higher priority users may not be entertained if lower priority jobs are occupying 

the system

● Support some spot pricing models
○ When cluster is under-utilized, offer GPUs at a cheaper price if the user is willing to scale-

down the job later on

● Increase flexibility while starting jobs
○ Start a job with smaller number of available GPUs and later scale as more GPUs become 

available



User-driven Elastic Scaling

AutoscalerScale 
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System-driven Elastic Scaling

Autoscaler
Maintenance

DLaaS/Trainer
Halt Job
Resume Job

Existing Job Scaled Job

Halt Resume

Job QMongoDBKubernetes

Usage
Usage Demand

Optimize cluster utilization
• Scale jobs up when cluster under-utilized (and 

vice-versa)
• min,max GPUs specified by user

Better handle planned maintenance and outages
• Avoid terminating jobs on nodes going down
• Scale jobs down instead

Handle priorities better [Ongoing work]

• Scale down jobs to admit higher priority jobs

• Choose jobs to scale-up based on priorities

• Interact with BSA scheduler and kube arbitrator



Impact on Users

• Requires (minimal) code changes from the user
– Regular Checkpointing (which the users mostly use and are already familiar with)
– For static/predefined scenario, user invokes simple functions by importing modules that hide 

details

• User specifies range of acceptable resources
– Currently the user specifies number of GPUs; now the user will specify range of GPUs 

(min and max) per learner
– System can schedule job with any number of GPUs between min and max
– User code (Learner), upon startup queries number of resources allocated and sets up hyper-

parameters accordingly

• Non-intrusive
– Works without modifying any framework – can work with all DLaaS frameworks



Lessons Learned

● Cluster managers alone are insufficient to run DL workloads effectively
● DL workloads are similar in many ways but are also different in important ways to 

regular datacenter workloads (gang, no overcommitment, etc.)

● Users hate jobs being queued with no estimate of how long the job will remain in the 
queue

● Non-distributed DL workloads are not rare; distributed DL workloads are not large 

scale (< 10 learners)
● Futile to try and predict job arrival trends

● Simplicity is key to scalability, fault tolerance and maintainability of DL platforms

● Popular open source technologies (ETCD, Kubernetes, Docker, GoLang) can be helpful, 
but need to be augmented where necessary



Avenues for further research

● Priority and pre-emption while scheduling deep learning jobs
● Dynamic priority (based on number of jobs submitted)

● Priority + elasticity

● Runtime estimation and estimating the amount of time jobs remain in the queue
● “Smarter” scheduling and load prediction for user-driven static elasticity scenario


