Gossiping GANs

Corentin Hardy*
Erwan Le Merrer** — Bruno Sericola**

*Technicolor & Inria **Inria

DIDL 2018
1 Introduction
 • Motivations
 • GAN over a spread dataset

2 Experiments
 • Competitors and experimental setup
 • Experimental setup
 • Results
 • Case of non i.i.d spread dataset

3 Discussion
1 Introduction
 • Motivations
 • GAN over a spread dataset

2 Experiments
 • Competitors and experimental setup
 • Experimental setup
 • Results
 • Case of non i.i.d spread dataset

3 Discussion
Applications related to GAN

Gossiping GANs
GAN in a nutshell

Generative adversarial network\(^1\) (GAN)

A GAN is composed of two components: a *generator* \(\mathcal{G}\) and a *discriminator* \(\mathcal{D}\).

The goal of a GAN is to generate new samples with the same distribution of a training dataset.

\(\mathcal{G}\) and \(\mathcal{D}\) are two ML models (DNNs).

\(^1\)Goodfellow *et al.* ”Generative adversarial nets.” (2014)
Training a GAN means learning D and G with adversary losses:

- the discriminator D tries to minimize:
 $$L_D = \mathbb{E}_{x \sim P_{data}} [\log D(x)] + \mathbb{E}_{x \sim P_G} [\log(1 - D(x))]$$
- the generator G tries to maximize: $$L_G = \mathbb{E}_{x \sim P_G} [\log D(x)]$$
Adversarial loss functions

Training a GAN means learning D and G with adversary losses:

• the discriminator D tries to minimize:

 $L_D = \mathbb{E}_{x \sim P_{data}} [\log D(x)] + \mathbb{E}_{x \sim P_G} [\log(1 - D(x))]$

• the generator G tries to maximize: $L_G = \mathbb{E}_{x \sim P_G} [\log D(x)]$

![Diagram of adversarial loss functions](image)
Training a GAN means learning D and G with adversary losses:

- the discriminator D tries to minimize:
 $$L_D = \mathbb{E}_{x \sim P_{data}} [\log D(x)] + \mathbb{E}_{x \sim P_G} [\log(1 - D(x))]$$
- the generator G tries to maximize:
 $$L_G = \mathbb{E}_{x \sim P_G} [\log D(x)]$$
Adversarial loss functions

Training a GAN means learning \mathcal{D} and \mathcal{G} with adversary losses:

- the discriminator \mathcal{D} tries to minimize:
 $$L_D = \mathbb{E}_{x \sim P_{data}} [\log D(x)] + \mathbb{E}_{x \sim P_G} [\log(1 - D(x))]$$

- the generator \mathcal{G} tries to maximize: $L_G = \mathbb{E}_{x \sim P_G} [\log D(x)]$
How train a GAN over a spread dataset?
How train a GAN over a spread dataset?

![Diagram of Gossiping GANs](image-url)
How train a GAN over a spread dataset?
How train a GAN over a spread dataset?
How train a GAN over a spread dataset?

\[\bar{g} \leftarrow \frac{1}{N} \sum_i g_i \]

\[\bar{D} \leftarrow \frac{1}{N} \sum_i D_i \]
How train a GAN over a spread dataset?

\[\hat{g} \leftarrow \frac{1}{N} \sum \hat{g}_i \]

\[\hat{D} \leftarrow \frac{1}{N} \sum \hat{D}_i \]

\[\mathcal{D}_1 \leftarrow \mathcal{D} \]

\[\hat{g}_1 \leftarrow \hat{g} \]
How train a GAN over a spread dataset?
How train a GAN over a spread dataset?

\[\hat{g} \leftarrow \frac{1}{N} \sum_i g_i \]
\[\hat{D} \leftarrow \frac{1}{N} \sum_i D_i \]
How train a GAN over a spread dataset?
How train a GAN over a spread dataset?
Federated Learning

All-reduce without PS

Corentin Hardy (Technicolor, Inria)

Gossiping GANs

DIDL 2018
All-reduce without PS

\[G_5 \leftarrow \frac{1}{N} \sum_i G_i \]
\[D_5 \leftarrow \frac{1}{N} \sum_i D_i \]
Gossip methods

\[G_5 \leftarrow \frac{1}{2} (G_5 + G_2) \]
\[D_5 \leftarrow \frac{1}{2} (D_5 + D_2) \]
Gossip methods

\[G_5 \leftarrow \frac{1}{2} (G_5 + G_3) \]
\[D_5 \leftarrow \frac{1}{2} (D_5 + D_3) \]
Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Communication per worker</th>
<th>Decentralized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federated Learning</td>
<td>$2(</td>
<td>G</td>
</tr>
<tr>
<td>All-reduce without PS</td>
<td>$N(</td>
<td>G</td>
</tr>
<tr>
<td>Gossip method</td>
<td>$</td>
<td>G</td>
</tr>
</tbody>
</table>

Gossip-based method

- More scalable in term of communications.
- Should decreases the learning performances.

Question: In the case of GANs, does gossip-based method not decrease too much performances of the final model?

3Existing gossip method for classical DNN: M. Blot et al. ”Gossip training for deep learning” (2016)
1 Introduction
 - Motivations
 - GAN over a spread dataset

2 Experiments
 - Competitors and experimental setup
 - Experimental setup
 - Results
 - Case of non i.i.d spread dataset

3 Discussion
The different communications setups

Competitors:

a) Stand-alone (no communication)

b) Federated Learning (all-reduced)

c) Gossip DDL (\mathcal{G}_i and \mathcal{D}_i are dependents)

d) Gossip DDL_ind (\mathcal{G}_i and \mathcal{D}_i are independents)

Figure: Red and blue arrows represent \mathcal{G}_i and \mathcal{D}_i movement.
Experimental setup

We emulate up to 100 workers on a large server to evaluate performances of Gossip DDL against the competitors.

- G and D are two DNN models.
- Each worker performs 20,000 iterations during the training.
- All communications are synchronized every $K = 200$ iterations.
- Each machine hosts $\frac{1}{N}$ of the training dataset (MNIST) randomly i.i.d. split.
- The MNSIT score (Inception score adapted to MNIST) and the Fréchet Inception Distance (adapted to MNIST) of all generators is computed every 1,000 iterations.
Performances of GAN during the training

![Graphs showing FID and MNIST Score for different values of N (1, 2, 10, 100) during the training process.](image)
Final scores and generated samples
Experiment with non i.i.d data (N=10)

Gossiping GANs

Corentin Hardy (Technicolor, Inria)

DIDL 2018 17 / 18
Conclusion

• Gossip performances are closed to federated learning.
• Considering G_i and D_i independents slightly improves the final score.
• The distribution of data on machines is crucial for GANs!

Future works

• Explore solutions in the case of non i.i.d. spread dataset.
• Understand the potential of GAN trained on a spread dataset (data-augmentation?)