Distributed C++-Python embedding for fast predictions and fast prototyping

Second Workshop on Distributed Infrastructures for Deep Learning (DIDL18)
Rennes France, December 10, 2018

Georgios Varisteas, SnT, georgios.varisteas@uni.lu
Tigran Avanesov, OLA Mobile, tigran.avanesov@olamobile.com
Radu State, SnT, radu.state@uni.lu
Banner Display Advertising at OLA Mobile

1. User clicks on *generic banner ad*

2. Ad request sent with user profile
 device, OS, provider, browser, date, country code, etc.

3. Feature extraction from user profile
 Time localization, Country Code Conversion \rightarrow OneHotEncoding

4. Predict most suitable ad campaign and landing page

5. Redirect user to landing page
Banner Display Advertising at OLA Mobile

1. User clicks on *generic banner ad*

2. Ad request sent with user profile

 - *device, OS, provider, browser, date, country code, etc.*

3. Feature extraction from user profile

 - Time localization, Country Code Conversion → OneHotEncoding

4. Predict most suitable ad campaign and landing page

5. Redirect user to landing page
Ad Campaign classification

- 1 year of research using SciKit Learn, started in 2016
 - Uses Logistic Regression classifiers
 - Extensive tuning based on sklearn implementation specifics
- Extensive feature engineering
 - Dirty, unstructured, frequently changing data
 - Data patterns do not imply correlations
- Classification based on a boolean label: Sale, not Sale
 - Highly unbalanced datasets:
 - Some got 1 sale every 1M clicks
 - Some got 1 sale every 1K clicks
 - Achieved consistent accuracy above 90%
Online Continuous Training Service

- **ConsumerManager**: Processes live streamed data
 - each file a complete data-set
- **DataManager**: Persists records into structured files
- **TrainingManager**: Train LogisticRegression models
 - one model per predicted feature value
- **Predictor**: Predict sale probability per campaign
 - the predicted feature is the campaign id
 - input is the user profile
Predictor

- Python based implementation
 - REST server
 - Loads classifiers from disk
 - Per request, predicts with every available classifier

- 5000 active campaigns on average, thus 5000 classifiers!
- The 200ms deadline still applies
Predictor

• Python based implementation
 • REST server
 • Loads classifiers from disk
 • Per request, predicts with every available classifier

• 5000 active campaigns on average, thus 5000 classifiers!
 • The 200ms deadline still applies

• Best result after heavy optimization: 3.1ms per classifier
Predictor

• Python based implementation
 • REST server
 • Loads classifiers from disk
 • Per request, predicts with every available classifier

• 5000 active campaigns on average, thus 5000 classifiers!
 • The 200ms deadline still applies

• Best result after heavy optimization: 3.1ms per classifier
 • For 5000 classifiers that would be: **15.5 sec**
Predictor

- Python based implementation
 - REST server
 - Loads classifiers from disk
 - Per request, predicts with every available classifier

- 5000 active campaigns on average, thus 5000 classifiers!
 - The 200ms deadline still applies

- Best result after heavy optimization: 3.1ms per classifier
 - For 5000 classifiers that would be: **15.5 sec**
 - To obey deadline we need **77.5** hardware threads and no conflicts
Python version performance

![Graph showing time vs. classifiers for Python SingleThreaded]
Python version performance

![Graph comparing Python MultiThreading and Python SingleThreaded performance](attachment:graph.png)
Python version performance

• Python GIL: Concurrency does not translate to parallelism
C++ to the rescue

• Embed Python into C++
 • Have C++ handle all data intensive processing
 • Faster and fine grained memory management
 • Lighter data structures
 • Much faster computation execution
 • True massive parallelism
 • Execute predictions in Python
 • 0.8ms per classifier
 • Implement Python multi-processing: no GIL
 • No need to change ML framework
 • No need to change the trainer
C++ to the rescue
C++-Python Performance

![Graph showing performance comparison between C++-Python Embedding, Python MultiThreading, and Python SingleThreaded over classifiers.](image_url)
C++-Python Scalability, 2000 classifiers
C++-Python Worker Utilization
C++-Python Worker Utilization
Deployment statistics
Deployment statistics

October 2018 results: revenue increase by 31%
Conclusions

- Python is dead slow!
- Concurrency does not guarantee performance

- Embedding Python into C++ enabled major performance improvements
- Development time was short
 - No need to evaluate a new ML platform

- Future work
 - improve work distribution, remove central queue
 - improve interprocess shared memory performance